Bede Scientific Instruments

�

�

� FORMTEXT ��Software Office,�

� FORMTEXT ��27 Sutton Street,�

� FORMTEXT ��Durham,�

� FORMTEXT ��DH1 4BW.�

�
�
�
Title:	�
Bede Object Data System�
�
�
�
�
Document Reference:�
BODS� FORMTEXT ��SO�/� FORMTEXT ��KERNDATSTUB� /� FORMTEXT ��REF��
�
�
�
�
Author(s):�
� FORMTEXT ��S. Johnston��
�
�
�
�
Circulation:	�
� FORMTEXT ��Programmers using object data system��
�
�
�
�
Location:�
\\� FORMTEXT ��Aslan�\� FORMDROPDOWN ��\� FORMTEXT ��documents\allsorts�\� FORMTEXT ��dataStub.doc��
�
�
�
�
Date:	�
24 / 4 / 96�
�
�
�
�
Version:�
4.1�
�
�
�
�
AMENDMENT RECORD

	�

Date�
Version�
Comment�
Author(s)�
Approved by�
�
14 /12/95�
1.0�
First draft for comment�
S. Johnston�
�
�
�
�
�
�
�
�
10/1/95�
2.0�
Array elements and array recovery routines were incorrect�
S. Johnston�
�
�
�
�
�
�
�
�
12/2/95�
3.0�
Mods after combination of class and data registries�
S. Johnston�
�
�
�
�
�
�
�
�
9/4/96�
4.0�
Mods to allow for multiple instances.�
S. Johnston�
�
�
�
�
�
�
�
�
24/4/96�
4.1�
32 bit version and file appending�
S. Johnston�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
 Object Data system

In an effort to make the Bede Scientific Object Data system more portable between programming languages, the Project PANTHER Kernel datastub has been incorporated in the BD16Dobj and Bd32Dobj DLLs. This means that all programs access the object data system via successive calls to the same function _ObjectDataStub� XE "ObjectDataStub function" �.

This function takes three parameters,

P0�
(integer)�
This should be zero, the object data system is the first DLL in the [16BIT_LIBS] or [32BIT_LIBS] sections of the kernel.ini file�
�
P1�
(integer)�
A function ID number, specifies what action will be taken.�
�
P2�
(unsigned long)�
An array of at least 7 elements. The data contained in each element depends on which function is being called.�
�

This interface is identical to that used by the Project PANTHER kernel and so will provide a supported method of accessing the object data system.

The array (P2) must have at least 7 elements, P2[6] will contain the data registry handle after the call to the initialise function.

Throughout this document the individual elements of the data array (P2) are referred to as Data[0]…Data[6]. An array of four byte unsigned integers.

Data[6] must not be altered in any way and the data array must be passed to all functions.

�
General commands.

Initialise� XE "Initialise" �

Description:	This function initialises the data environment and must be called before the object data system can be used.

FunctionID = 0

Parameters:

		Data[6] returns the registry handle.	

Example:

		unsigned long Data[7];

		status = callout(0, 0, (unsigned long)Data);

Close Down� XE "Close_Down" �

Description:	This function closes down the object data system and deletes all storage allocated.

FunctionID = 1

Example:

		unsigned long Data[7];

		status = callout(0, 0, (unsigned long)Data);

Get Field Size� XE "Get_Field_Size" �

Description:	Recovers information about the number of elements that may be stored within a given field. (The array size)

FunctionID = 28

Parameters:

		Data[0]	(char *)	Name of the object.field

		Data[1]	(long)		Returns the field size

Create object� XE "Create_object" �

Description:	Creates an empty data object that may have fields added to it afterwards

FunctionID = 4

Parameter:

	Data[0]		(char *)	Name to be given to the object

	

�
Delete Object� XE "Delete_object" �

Description:	Deletes an object from the registry and recovers all memory allocated to it. The class declaration on which the object is based is not affected.

FunctionID = 5

Parameters:

	Data[0]		(char *)	Name of the object to delete.

Count Registered Objects� XE "Count_Registered_Objects" �

Description:	Returns the number of data objects currently in the registry as Data[0]

FunctionID = 7

Parameters:

Data[0]		(long)		Returns the number of objects

Store Data Array� XE "Store_Data_Array" �

Description:	This function is used to store data. It is used for all data types, and regardless of the number of elements to be stored. The data is stored within the field named. Any data stored previously within that field is destroyed. New data need not be of the same type as that previously stored within a field.

FunctionID = 8

Parameters:

	Data[0]		(char *)		Object.Fieldname

	Data[1]		(void *)		pointer to the data

	Data[2]		(integer)		data type marker.

	Data[3]		(unsigned long)	Number of data elements

		Data[4]	(char *)		User defined comment string.

�
Store Data Element� XE "Store_Data_Element" �

Description:	This function is used to store data. It is used for all data types, and regardless of the number of elements to be stored. The data is stored within the field named. Any data stored previously within that field is kept, except that within the array indices supplied. The data type must be the same as that already stored.

FunctionID = 9

Parameters:

	Data[0]		(char *)		Object.Fieldname

	Data[1]		(void *)		pointer to the data

	Data[2]		(integer)		data type marker.

	Data[3]		(unsigned long)	Number of data elements

		Data[4]	(unsigned long)	Start position to replace from

		Data[5]	(char *)		User defined comment string.

Get Data Array� XE "Get_Data_Array" �

Description:	This function returns data to the calling routine. The user must allocate space and pass a pointer to this space for the object data system to copy the data for return. Entire arrays need not be returned.

FunctionID = 10

Parameters:

	Data[0]		(char *)		Object.Fieldname

	Data[1]		(void *)		pointer to the target data array

	Data[2]		(integer)		data type marker.

	Data[3]		(unsigned long)	Number of data elements

		Data[4]	(unsigned long)	Starting index.

Store User Type� XE "Store_User_Type" �

Description:	This function is used to store a user defined structure.

FunctionID = 12

Parameters:

	Data[0]		(char *)		Object.Fieldname

	Data[1]		(void *)		pointer to the data

	Data[2]		(unsigned long)	Size of the structure

		Data[3]	(char *)		User defined comment string.

Get User Type� XE "Get_User_Type" �

Description:	This function is used to store a user defined structure.

FunctionID = 11

Parameters:

	Data[0]		(char *)		Object.Fieldname

	Data[1]		(void *)		pointer to the data

Lock Data Type� XE "Lock_Data_Type" �

Description:	This function locks the data type and array size for a given field. The data within may be changed.

FunctionID = 13

Parameters:

	Data[0]		(char *)		Object.Fieldname

Free Data Type� XE "Free_Data_Type" �

Description:	This function frees the data type and array size for a given field.

FunctionID = 14

Parameters:

	Data[0]		(char *)		Object.Fieldname

Lock Data� XE "Lock_Data" �

Description:	This function locks the data type and array size for a given field. The data within the field is made readonly.

FunctionID = 15

Parameters:

	Data[0]		(char *)		Object.Fieldname

Free Data� XE "Free_Data" �

Description:	This function unlocks the data type and array size for a given field. The data within the field is made writeable.

FunctionID = 29

Parameters:

	Data[0]		(char *)		Object.Fieldname

�
Get Type Status� XE "Get_Type_Status" �

Description:	This function returns the status of the type locked flag.

FunctionID = 16

Parameters:

	Data[0]		(char *)		Object.Fieldname

Get Data Status� XE "Get_Data_Status" �

Description:	This function returns the status of the data locked flag.

FunctionID = 17

Parameters:

	Data[0]		(char *)		Object.Fieldname

Save_As_Bede_File� XE "Save_As_Bede_File" �

Description:	All objects in the registry that are tagged, will be saved to a Bede Scientific Instruments format file. This may be ASCII or binary format and contains all information required to reconstruct the data objects.

FunctionID = 18

Parameters:

	Data[0]		(char *)	Filename

	Data[1]		(char)		Mode, 0 = ASCII, 1 = binary

		Data[2]	(void *)	Pointer to a header type structure Appendix 3.

Load Bede File� XE "Load_Bede_File" �

Description:	This function is used to load data stored in the Bede Scientific Instruments file format. If the file is an ASCII file, then the objects are streamed into the registry. If the file is a binary file then only the object headers are streamed in.

FunctionID = 19

Parameters:

 	Data[0]		(char *)	Filename

	Data[1] 	(void *)	Pointer to a header stuct.

�
Append Bede File� XE "Append_Bede_File" �

Description:	This function is used to append two files. Each of the two source files may be either binary or ascii and the resulting file format is chosen by the user. If only one source file is passed (Data[2] = 0) then this function can be used to convert a file between binary and ascii formats.

FunctionID = 30

Parameters:

 	Data[0]		(char *)	Target Filename

	Data[1] 	(void *)	First source filename.

	Data[2] 	(void *)	Second source filename.

	Data[1] 	(char)		Target format: 0 for ascii, 1 for binary

Tag Object� XE "Tag_Object" �

Description:	Sets the Tag field of an object. Tagged objects can be collectively deleted, stored to, or retrieved from, a file.

FunctionID = 20

Parameters:

	Data[0]		(char *)	Object name

Untag Object� XE "Untag_Object" �

Description:	Clears the Tag field of an object. Tagged objects can be collectively deleted, stored to, or retrieved from, a file.

FunctionID = 21

Parameters:

	Data[0]		(char *)	Object name

Tag All Objects� XE "Tag_All_Objects" �

Description:	Sets the Tag field of all objects in the registry. Tagged objects can be collectively deleted, stored to, or retrieved from, a file.

FunctionID = 22

Untag All Objects� XE "Untag_All_Objects" �

Description:	Clears the Tag field of all objects in the registry. Tagged objects can be collectively deleted, stored to, or retrieved from, a file.

FunctionID = 23

Delete Unloaded Objects� XE "Delete_Unloaded_Objects" �

Description:	This function removed from the registry any invalid objects, also any object headers for objects whose data is not in memory are deleted.

FunctionID = 25

Delete Tagged Objects� XE "Delete_Tagged_Objects" �

Description:	Deletes all objects in the registry that have their Tag field set.

FunctionID = 26

Get_Object_Tag� XE "Get_Object_Tag" �

Description:	Returns an error code based on whether the object has its Tag field set or cleared.

FunctionID = 27

�
Appendix 1

Data Types.

Data type�
identification number�
�
1 byte integer (char)�
1�
�
2 byte integer (short int)�
2�
�
*** NOT USED ***�
3�
�
4 byte integer (long)�
4�
�
4 byte unsigned integer(unsigned long)�
5�
�
4 byte floating point number (float)�
6�
�
8 byte floating point number (double)�
7�
�
Variable length string�
9�
�

�
Appendix 2

Error codes returned

	0 - SUCCESS

	1 - RegMemAlloc, 		// Registry failed to malloc

	2 - RegNoObject, 		// No object of that name

	3 - RegCrFail,		// Could not create the registry

	4 - RegListFull,		// All registry list positions allocated

5 - ObjMemAlloc, 		// Data object failed to malloc

	6 - ObjNoDecReg, 		// No declaration registry

	7 - ObjNoDecl, 		// No declaration of that name

	8 - ObjInvDecl, 		// Declaration is invalid

	9 - ObjNoField, 		// No field of that name

	10 - ObjArrType, 		// Arrays have different data types

	11 - ObjValRange, 		// Value out of range of type

	12 - ObjArrSize, 		// Array - single value mismatch

	13 - ObjUnkError, 		// Object passed an invalid type

	14 - ObjOnFile, 		// Data is still on disk file

	15 - ObjNoData, 		// No data has been set for that field

	16 - ObjNotThere, 		// Data not found in disk file

	17 - ObjInvPtr, 		// Expected to get a NULL pointer

	18 - ObjNoStore, 		// No space malloced for data

	19 - ObjPreTagged,		// object is tagged

	20 - ObjPreUntagged,		// object is NOT tagged

	21 - ObjChildTagged, 	// object has tagged children

	22 - ObjTypeMismatch, 	// Types not compatible

	23 - PimMemAlloc,		// Failed to allocate memory within PIM

	24 - PimNoReg,		// No registry created.

	25 - PimFileExists,		// file exists.

	26 - PimInvSubst,		// Invalid registry substitution.

	27 - Failure,			// Failed to create registry

	28 - InsufficientDiskSpace,

	29 - NullParam,		// expected non NULL pointer

	30 - InvalidParam,

	31 - StreamInError,		// Error reading data file

	32 - StreamOutError,		// Error writing data file

	33 - UndefinedError,		// Unknown error

	34 - NoSuchClass,		// No class of this name in registry

	35 - NoSuchField,		// No field of this name in class

	36 - NoSuchObject,		// No object of this name in registry

	37 - InvalidClassName,	// Non valid class name passed

	38 - UnableToAddClass,	// Class registry full

	39 - ClassRegistryError,	// Class registry corrupt

	40 - ClassAllocError,		// Memory allocation error

	41 - ClassIsRegistered,	// Class of this name exists

	42 - ClassInstantiated,		

	43 - ClassNameMismatch,

	44 - FrozenDeclaration,	// Cannot add fields to a class with objects

	45 - InvalidFieldName,	// Illegal characters in field name

	46 - UnableToAddField,	// Field cannot be added to class

	47 - FieldRegistryError,	// Field registry corrupt

	48 - FieldAllocError,		// memory allocation error

	49 - FieldIsRegistered,	// Field of that name in the class

	50 - UnableToConvert,		

	51 - FieldNameMismatch

	52 - NoSuchFile,		// File does not exist

	53 - ShortFile,			// expected more data within file

	54 - BedeFile,			// File is a Bede format file

	55 - NonBedeFile,		// File is not a Bede format file

	56 - NoBedeFiles,		// No Bede files in that location

	57 - FileOpenError,		// File locked by another user

	58 - FileAlreadyExists,

	59 - FileReadError,

	60 - FileWriteError,

	61 - FilePositionError,

	62 - FileCopyError,

	63 - FileEraseError,

	64 - FileInsertError,

	65 - FileDeleteError,

	66 - MediaNotPresent,

	67 - MediaNotFomatted,

	68 - MediaFomatError,

	69 - MediaError,

	70 - NextDisk,

	71 - WrongDisk,

	72 - ArchiveMismatch,

	73 - CompAppNotFound,		// compression application not found

	74 - CompressionError,		// error during data compression

	75 - FileIsCompressed,		// Expected uncompressed file

	76 - UncompAppNotFound,		// uncompression application not found

	77 - UncompressionError,

	78 - FileNotCompressed,

	79 - KernelNoStub,

	80 - KernelNoFunction,		// Invalid FunctionID passed

	81 - KernelParamError,		// Error in parameters passed.

 82 - KernelModeCrash		// Error within Panther kernel

						

83 - ObjFreeFail			// Failed to delete previous object

	84 - ObjTypeLock			// field is type locked

	85 - ObjDataLock			// field is readonly

	86 - ObjNoType			// No type given for field

	87 - MemFreeFail			// memory deallocation failed

	88 - MemLockFail			// memory handle lock failed

	89 - FieldLock				// Field locking error

90 - FileFailOpen 			// File failed to open.

91 - Not8_3Filename			// File is not 8.3 format when expected.

92 - KernelLibLoadFail		// Kernel failed to load a DLL.

93 - End_Of_File			// End of file marker reached.

�
Appendix 3

The Header structure as required for a Bede format file.

struct { char Filename[100];

			char IsBinary;

			char CreationDate[11];

			char ModificationDate[11];

			float Version;

			char IsCompressed;

			char Creator[20];

			char User[20];

			int FileType;

			char Comment[200];

			} Header;�
� INDEX \h "A" \c "2" �

�
A

Append_Bede_File, 9

C

Close_Down, 4

Count_Registered_Objects, 5

Create_object, 4

D

Delete_object, 5

Delete_Tagged_Objects, 10

Delete_Unloaded_Objects, 10

F

Free_Data, 7

Free_Data_Type, 7

G

Get_Data_Array, 6

Get_Data_Status, 8

Get_Field_Size, 4

Get_Object_Tag, 10

Get_Type_Status, 8

Get_User_Type, 7

I

Initialise, 4

L

Load_Bede_File, 8

Lock_Data, 7

Lock_Data_Type, 7

O

ObjectDataStub function, 3

S

Save_As_Bede_File, 8

Store_Data_Array, 5

Store_Data_Element, 6

Store_User_Type, 6

T

Tag_All_Objects, 9

Tag_Object, 9

U

Untag_All_Objects, 9

Untag_Object, 9

�
�

�PAGE �

Bede Object Data System		Page � PAGE �1� of 24

�

